skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lekili, Yankı"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $$\mathbb{CP}^{n}$$ , for $$k\geqslant n$$ , with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $$\mathbb{C}P^{n}$$ ( $$n$$ -dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $$x_{1}x_{2}\ldots x_{n+1}=0$$ . By localizing, we deduce that the (fully) wrapped Fukaya category of the $$n$$ -dimensional pair of pants is equivalent to the derived category of $$x_{1}x_{2}\ldots x_{n+1}=0$$ . We also prove similar equivalences for finite abelian covers of the $$n$$ -dimensional pair of pants. 
    more » « less